Synthesis of Ultrathin WS2 Nanosheets and Their Tribological Properties as Lubricant Additives

نویسندگان

  • Xianghua Zhang
  • Hongxiang Xu
  • Jiangtao Wang
  • Xia Ye
  • Weining Lei
  • Maoquan Xue
  • Hua Tang
  • Changsheng Li
چکیده

In this paper, ultrathin WS2 nanosheets with thickness of about 5 nm were successfully prepared by a facile solid phase reaction method. The as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). On the basis of experimental results obtained under different reaction durations, a possible formation mechanism of WS2 nanosheets is proposed. The tribological performance of ultrathin WS2 nanosheets as additives in the 500SN base oil was tested by an UMT-2 ball-on-disc tribotester, and the worn surface of the steel disc was investigated by a non-contact optical profile testing instrument and SEM. The results showed that the friction coefficient and anti-wear property of base oil can be improved strikingly by adding ultrathin WS2 nanosheets. Especially, when the concentration of WS2 nanosheets was 1.0 wt.%, the corresponding lubricating oil exhibited the best tribological properties. Moreover, according to the investigation of the wear scar, an anti-friction and anti-wear mechanism is proposed. It is believed that the reduction of friction and wear must come from the addition of ultrathin WS2 nanosheets which can penetrate and enter the friction interface and form a continuous tribofilm on the rubbing face.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with ol...

متن کامل

WS2 Nanoparticles - Potential Replacement for ZDDP and Friction Modifier Additives

In high-pressure, high-temperature sliding contacts, WS2 nanoadditives react with the metal substrate to generate 100+ nm chemical tribofilms with a layered structure and excellent tribological properties. The friction, wear and micromechanical properties of WS2 tribofilms are compared with those of tribofilms formed by the zinc dialkyldithiophosphate (ZDDP) antiwear additive and ZDDP-organic f...

متن کامل

Ferromagnetism in exfoliated tungsten disulfide nanosheets

Two-dimensional-layered transition metal dichalcogenides nanosheets have attracted tremendous attention for their promising applications in spintronics because the atomic-thick nanosheets can not only enhance the intrinsic properties of their bulk counterparts, but also give birth to new promising properties. In this paper, ultrathin tungsten disulfide (WS2) nanosheets were gotten by liquid exf...

متن کامل

Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investig...

متن کامل

Tribological behavior of sputter-deposited MoSX/Ni coatings

AbstractSputtered MoS2 coatings have been mostly used as a solid lubricant. In this investigation, MoSx/Ni composite coatings with Ni contents varying from 0 to 22 % were deposited onto steel substrate using a DC magnetron sputter process. The MoS2/Ni ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016